Bayesian Mixture Models for Frequent Itemset Discovery
نویسندگان
چکیده
In binary-transaction data-mining, traditional frequent itemset mining often produces results which are not straightforward to interpret. To overcome this problem, probability models are often used to produce more compact and conclusive results, albeit with some loss of accuracy. Bayesian statistics have been widely used in the development of probability models in machine learning in recent years and these methods have many advantages, including their abilities to avoid overfitting. In this paper, we develop two Bayesian mixture models with the Dirichlet distribution prior and the Dirichlet process (DP) prior to improve the previous non-Bayesian mixture model developed for transaction dataset mining. We implement the inference of both mixture models using two methods: a collapsed Gibbs sampling scheme and a variational approximation algorithm. Experiments in several benchmark problems have shown that both mixture models achieve better performance than a non-Bayesian mixture model. The variational algorithm is the faster of the two approaches while the Gibbs sampling method achieves a more accurate result. The Dirichlet process mixture model can automatically grow to a proper complexity for a better approximation. Once the model is built, it can be very fast to query and run analysis on (typically 10 times faster than Eclat, as we will show in the experiment section). However, these approaches also show that mixture models underestimate the probabilities of frequent itemsets. Consequently, these models have a higher sensitivity but a lower specificity.
منابع مشابه
AMKIS: An Algorithm for Association Mining
Mining frequent items and itemsets is a daunting task in large databases and has attracted research attention in recent years. Generating specific itemset, K –itemset having K items, is an interesting research problem in data mining and knowledge discovery. In this paper, we propose an algorithm for finding K itemset frequent pattern generation in large databases which is named as AMKIS. AMKIS ...
متن کاملA Survey on Moving Towards Frequent Pattern Growth for Infrequent Weighted Itemset Mining
Data Mining and knowledge discovery is one of the important areas. In this paper we are presenting a survey on various methods for frequent pattern mining. From the past decade, frequent pattern mining plays a very important role but it does not consider the weight factor or value of the items. The very first and basic technique to find the correlation of data is Association Rule Mining. In ARM...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملGraph Based Approach for Finding Frequent Itemsets to Discover Association Rules
The discovery of association rules is an important task in data mining and knowledge discovery. Several algorithms have been developed for finding frequent itemsets and mining comprehensive association rules from the databases. The efficiency of these algorithms is a major issue since a long time and has captured the interest of a large community of researchers. This paper presents a new approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1209.6001 شماره
صفحات -
تاریخ انتشار 2011